A multidimensional colored packing approach for network slicing with dedicated protection
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Orange Labs
- EfdyNet
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
- ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
Description
Network Function Virtualization (NFV) enables the virtualization of core-business network functions on top of a NFV infrastructure. NFV has gained an increasing attention in the telecommunication field these last few years. Virtual network functions (VNFs) can be represented by a set of virtual network function components (VNFCs). These VNFCs are typically designed with a redundancy scheme and need to be deployed against failures of, e.g., compute servers. However, such deployment must respect a particular resiliency mechanism for protection purposes. Therefore, choosing an efficient mapping of VNFCs to the compute servers is a challenging problem in the optimization of the software-defined, virtualization-based next generation of networks. In this paper, we model the problem of reliable VNFCs placement under anti-affinity constraints using several optimization techniques. A novel approach based on an extension of bin packing is proposed. We perform a comprehensive evaluation in terms of performance under realworld ISP networks along with synthetic traces. We show that our methods can calculate rapidly efficient solutions for large instances.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03364714
- URN
- urn:oai:HAL:hal-03364714v1
- Origin repository
- UNICA