VLTI/AMBER unveils a possible dusty pinwheel nebula in WR118.
- Others:
- Max-Planck-Institut für Radioastronomie (MPIFR)
- Laboratoire Hippolyte Fizeau (FIZEAU) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Most Wolf-Rayet stars (WR) of WC9 sub-type exhibit a dusty circumstellar envelope, but it is still a matter of debate how dust can form in their harsh environment. In a few cases, a pinwheel-like structure of the dusty envelope has been detected. Therefore, it has been suggested that dust formation in all dusty WR stars might be linked to colliding winds in a binary system. We probed the innermost region of the circumstellar dust shell of the deeply embedded WR star WR 118. We carried out spectro-interferometric observations using the AMBER instrument of ESO's Very Large Telescope Interferometer in low-spectral resolution mode (R = 35). The K-band observations were obtained with three 1.8 m telescopes spanning projected baselines between 9.2 and 40.1 m. At high spatial frequencies, the AMBER visibilities exhibit a prominent lobe, indicating that the envelope contains one or several zones with a large local intensity gradient. The strong closure phase signal clearly shows that the circumstellar envelope of WR 118 can only be described by an asymmetric intensity distribution. We show that a pinwheel nebula seen at low inclination is consistent with the AMBER data. Its size was determined to be 13.9+-1.1 mas. WR 118 possibly harbors a pinwheel nebula, which suggests a binary nature of the system. According to our best model, the period of the system would be ~60 days (for d=3 kpc), making WR 118 the shortest-period pinwheel nebula known so far.
Abstract
Letter accepted in A&A for publication
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00419379
- URN
- urn:oai:HAL:hal-00419379v1
- Origin repository
- UNICA