Non-parametric online change point detection on Riemannian manifolds
- Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
- Northwestern Polytechnical University [Xi'an] (NPU)
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-19-CE48-0002,DARLING,Adaptation et apprentissage distribués pour les signaux sur graphe(2019)
- ANR-23-CE23-0024,LENTILLE,Aprentissage et adaptation des modèles generatifs pour resoudre des problèmes inverses aveugles(2023)
- ANR-23-CE94-0001,AGDAM,Apprentissage sur des Grands jeux de Données : Application à l'analyse de données IRMf Multi-sujets(2023)
Description
Non-parametric detection of change points in streaming time series data that belong to Euclidean spaces has been extensively studied in the literature. Nevertheless, when the data belongs to a Riemannian manifold, existing approaches are no longer applicable as they fail to account for the structure and geometry of the manifold. In this paper, we introduce a non-parametric algorithm for online change point detection in manifold-valued data streams. This algorithm monitors the generalized Karcher mean of the data, computed using stochastic Riemannian optimization. We provide theoretical bounds on the detection and false alarm rate performances of the algorithm, using a new result on the non-asymptotic convergence of the stochastic Riemannian gradient descent. We apply our algorithm to two different Riemannian manifolds. Experimental results with both synthetic and real data illustrate the performance of the proposed method.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04632586
- URN
- urn:oai:HAL:hal-04632586v1
- Origin repository
- UNICA