Introduction to Geometric Learning in Python with Geomstats
- Creators
- Miolane, Nina
- Guigui, Nicolas
- Zaatiti, Hadi
- Shewmake, Christian
- Hajri, Hatem
- Brooks, Daniel
- Le Brigant, Alice
- Mathe, Johan
- Hou, Benjamin
- Thanwerdas, Yann
- Heyder, Stefan
- Peltre, Olivier
- Koep, Niklas
- Cabanes, Yann
- Gerald, Thomas
- Chauchat, Paul
- Kainz, Bernhard
- Donnat, Claire
- Holmes, Susan
- Pennec, Xavier
- Others:
- Stanford University
- Université Côte d'Azur (UCA)
- Institut National de Recherche en Informatique et en Automatique (Inria)
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- IRT SystemX
- Washington University in Saint Louis (WUSTL)
- Thales Air Systems ; THALES [France]
- Machine Learning and Information Access (MLIA) ; LIP6 ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM) ; Université Paris 1 Panthéon-Sorbonne (UP1)
- Frog labs AI San Francisco ; Stanford University
- Imperial College London
- Technische Universität Ilmenau (TU )
- Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
- Institut de Mathématiques de Bordeaux (IMB) ; Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Centre de Robotique (CAOR) ; Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Meghann Agarwal
- Chris Calloway
- Dillon Niederhut
- David Shupe
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- European Project: 786854,H2020 Pilier ERC,ERC AdG(2018)
Description
There is a growing interest in leveraging differential geometry in the machine learning community. Yet, the adoption of the associated geometric computations has been inhibited by the lack of a reference implementation. Such an implementation should typically allow its users: (i) to get intuition on concepts from differential geometry through a hands-on approach, often not provided by traditional textbooks; and (ii) to run geometric machine learning algorithms seamlessly, without delving into the mathematical details. To address this gap, we present the open-source Python package geomstats and introduce hands-on tutorials for differential geometry and geometric machine learning algorithms-Geometric Learning-that rely on it. Code and documentation: github.com/geomstats/geomstats and geomstats.ai.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02908006
- URN
- urn:oai:HAL:hal-02908006v1
- Origin repository
- UNICA