Published July 6, 2020 | Version v1
Conference paper

Introduction to Geometric Learning in Python with Geomstats

Others:
Stanford University
Université Côte d'Azur (UCA)
Institut National de Recherche en Informatique et en Automatique (Inria)
E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
IRT SystemX
Washington University in Saint Louis (WUSTL)
Thales Air Systems ; THALES [France]
Machine Learning and Information Access (MLIA) ; LIP6 ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM) ; Université Paris 1 Panthéon-Sorbonne (UP1)
Frog labs AI San Francisco ; Stanford University
Imperial College London
Technische Universität Ilmenau (TU )
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
Institut de Mathématiques de Bordeaux (IMB) ; Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Centre de Robotique (CAOR) ; Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Meghann Agarwal
Chris Calloway
Dillon Niederhut
David Shupe
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
European Project: 786854,H2020 Pilier ERC,ERC AdG(2018)

Description

There is a growing interest in leveraging differential geometry in the machine learning community. Yet, the adoption of the associated geometric computations has been inhibited by the lack of a reference implementation. Such an implementation should typically allow its users: (i) to get intuition on concepts from differential geometry through a hands-on approach, often not provided by traditional textbooks; and (ii) to run geometric machine learning algorithms seamlessly, without delving into the mathematical details. To address this gap, we present the open-source Python package geomstats and introduce hands-on tutorials for differential geometry and geometric machine learning algorithms-Geometric Learning-that rely on it. Code and documentation: github.com/geomstats/geomstats and geomstats.ai.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023