How useful randomness for cryptography can emerge from multicore-implemented complex networks of chaotic maps
- Creators
- Lozi, Jean-Pierre
- Lozi, René
- Garasym, Oleg
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MODALIS ; Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- supported in part by AFOSR grant FA 9550-13-1-0136
Description
We introduce a novel method revealing hidden bifurcations in the multispiral Chua attractorin the case where the parameter of bifurcation c which determines the number of spiral isdiscrete. This method is based on the core idea of the genuine Leonov and Kuznetsov methodfor searching hidden attractors (i.e. applying homotopy and numerical continuation) but used ina very different way. Such hidden bifurcations are governed by a homotopy parameter ε whereasc is maintained constant. This additional parameter which is absent from the initial problem isperfectly fitted to unfold the actual structure of the multispiral attractor. We study completelythe multispiral Chua attractor, generated via sine function, and check numerically our methodfor odd and even values of c from 1 to 12. In addition, we compare the shape of the attractorsobtained for the same value of parameter ε while varying the parameter c.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01742568
- URN
- urn:oai:HAL:hal-01742568v1
- Origin repository
- UNICA