Published October 27, 2014 | Version v1
Conference paper

Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification

Others:
Images et Modèles ; Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Application des ultrasons à la thérapie (LabTAU) ; Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)

Description

This paper aims at presenting results of a computer-aided diagnostic (CAD) system for voxel based detection and characterization of prostate cancer in the peripheral zone based on multiparametric magnetic resonance (mp-MR) imaging. We propose an original scheme with the combination of a feature extraction step based on a sparse dictionary learning (DL) method and a supervised classification in order to discriminate normal {N}, normal but suspect {NS} tissues as well as different classes of cancer tissue whose aggressiveness is characterized by the Gleason score ranging from 6 {GL6} to 9 {GL9}. We compare the classification performance of two supervised methods, the linear support vector machine (SVM) and the logistic regression (LR) classifiers in a binary classification task. Classification performances were evaluated over an mp-MR image database of 35 patients where each voxel was labeled, based on a ground truth, by an expert radiologist. Results show that the proposed method in addition to being explicable thanks to the sparse representation of the voxels compares well (AUC>0.8) with recent state-of-the-art performances. Preliminary visual analysis of example patient cancer probability maps indicate that cancer probabilities tend to increase as a function of the Gleason score.

Abstract

International audience

Additional details

Created:
March 25, 2023
Modified:
November 29, 2023