Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells
- Others:
- Institut d'Investigació Biomèdica de Bellvitge [Barcelone] (IDIBELL)
- University of Amsterdam [Amsterdam] (UvA)
- Centre méditerranéen de médecine moléculaire (C3M) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)
- Chemistry, Oncogenesis, Stress and Signaling (COSS) ; Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Universitat de Barcelona (UB)
Description
Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell death. Cell starvation also triggers adaptive responses, like angiogenesis, that promote tissue reorganization and repair, but other adaptive responses and their mediators are still poorly characterized. To explore this issue, we analyzed secretomes from glucose-deprived cells, which revealed up-regulation of multiple cytokines and chemokines, including IL-6 and IL-8, in response to starvation stress. Starvation-induced cytokines were cell type-dependent, and they were also released from primary epithelial cells. Most cytokines were up-regulated in a manner dependent on NF-κB and the transcription factor of the integrated stress response ATF4, which bound directly to the IL-8 promoter. Furthermore, glutamine deprivation, as well as the antimetabolic drugs 2-deoxyglucose and metformin, also promoted the release of IL-6 and IL-8. Finally, some of the factors released from starved cells induced chemotaxis of B cells, macrophages, and neutrophils, suggesting that nutrient deprivation in the tumor environment can serve as an initiator of tumor inflammation.
Abstract
International audience
Additional details
- URL
- https://hal-univ-rennes1.archives-ouvertes.fr/hal-02563840
- URN
- urn:oai:HAL:hal-02563840v1
- Origin repository
- UNICA