Bifurcation of hyperbolic planforms
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Mathematical and Computational Neuroscience (NEUROMATHCOMP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- European Project: 227747,EC:FP7:ERC,ERC-2008-AdG,NERVI(2009)
Description
Motivated by a model for the perception of textures by the visual cortex in primates, we analyze the bifurcation of periodic patterns for nonlinear equations describing the state of a system defined on the space of structure tensors, when these equations are further invariant with respect to the isometries of this space. We show that the problem reduces to a bifurcation problem in the hyperbolic plane D (Poincaré disc). We make use of the concept of a periodic lattice in D to further reduce the prob- lem to one on a compact Riemann surface D/Γ , where Γ is a cocompact, torsion-free Fuchsian group. The knowledge of the symmetry group of this surface allows us to use the machinery of equivariant bifurcation theory. Solutions which generically bi- furcate are called "H-planforms", by analogy with the "planforms" introduced for pattern formation in Euclidean space. This concept is applied to the case of an octag- onal periodic pattern, where we are able to classify all possible H-planforms satis- fying the hypotheses of the Equivariant Branching Lemma. These patterns are, how- ever, not straightforward to compute, even numerically, and in the last section we describe a method for computation illustrated with a selection of images of octagonal H-planforms.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00807355
- URN
- urn:oai:HAL:hal-00807355v1
- Origin repository
- UNICA