Published August 6, 2017
| Version v1
Conference paper
Sliced Wasserstein Kernel for Persistence Diagrams
Contributors
Others:
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Graduate School of Informatics [Kyoto] ; Kyoto University
- European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)
Description
Persistence diagrams (PDs) play a key role in topological data analysis (TDA), in which they are routinely used to describe topological properties of complicated shapes. PDs enjoy strong stability properties and have proven their utility in various learning contexts. They do not, however , live in a space naturally endowed with a Hilbert structure and are usually compared with non-Hilbertian distances, such as the bottleneck distance. To incorporate PDs in a convex learning pipeline, several kernels have been proposed with a strong emphasis on the stability of the resulting RKHS distance w.r.t. perturbations of the PDs. In this article, we use the Sliced Wasserstein approximation of the Wasserstein distance to define a new kernel for PDs, which is not only provably stable but also discriminative (with a bound depending on the number of points in the PDs) w.r.t. the first diagram distance between PDs. We also demonstrate its practicality, by developing an approximation technique to reduce kernel computation time, and show that our proposal compares favorably to existing kernels for PDs on several benchmarks.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01633105
- URN
- urn:oai:HAL:hal-01633105v1
Origin repository
- Origin repository
- UNICA