Published 2011 | Version v1
Publication

Organic matter recycling during a mucilage event and its influence on the surrounding environment (Ligurian Sea, NW Mediterranean)

Description

The development of benthic mucilage in the Marine Protected Area of Portofino (Ligurian Sea) during the summer of 2009 was studied to verify the influence of this event on the surrounding environment (seawater and soft-bottom). The calm meteorological and sea conditions at the beginning of the time frame under consideration caused the thermal stratification of the water column. This stratification was one of the driving factors influencing the development of the mucilage, which developed on a large boulder surface above the pycnocline. Mucilage was progressively detached from the boulder surface by hydrodynamism, together with macroalgae, and sank onto the sediment below the thermocline. Increased surface-water movements, caused by meteorological forcing during the study period, influenced the aggregation–disaggregation of mucilage flocks above the thermocline, leading to increased dissolved oxygen concentrations and enhanced production and turnover of the organic matter (OM). Mixing with the adjacent seawater led to the fertilisation of the surrounding environment with potentially labile OM and inorganic phosphorus, which caused increases in the hydrolytic enzymatic activity. Conversely, below the thermocline, the sunken mucilage and algae aggregates supported a heterotrophic consumption system. Dissolved oxygen concentrations were lower than those recorded in the mucilage lying above the thermocline, making more carbohydrates than proteins and labile phosphorus available. Despite the slow oxygenation of this mucilage, it contributed to the food supply for the soft-bottom macrofauna, which showed an increase in density, diversity and biomass during the study. These results suggest that the development and fate of the mucilage, as well as its interactions with the surrounding environment, were principally regulated by physical features. In the oligotrophic coastal area of the Ligurian Sea, certain compartments of the ecosystem were able to promptly respond and take advantage of the mucilage event of the summer of 2009, although the persistence of mucilage on hard substrates is known to cause suffocation and macroalgae biomass depletion. It is proposed that, at least in oligotrophic conditions and as long as mucilage persistence doesn't cause severe oxygen depletion, its appearance might have an enhancing rather than a detrimental effect on the seawater and soft-bottom biogeochemical processes.

Additional details

Created:
April 14, 2023
Modified:
November 28, 2023