Published 2009
| Version v1
Journal article
Blind identification of multiuser nonlinear channels using tensor decomposition and precoding
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- GTEL - Grupo de Pesquisa em Telecomunicações Sem Fio (UFC) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
Description
This paper presents two blind identification methods for nonlinear memoryless channels in multiuser communication systems. These methods are based on the parallel factor (PARAFAC) decomposition of a tensor composed of channel output covariances. Such a decomposition is possible owing to a new precoding scheme developed for phase-shift keying (PSK) signals modeled as Markov chains. Some conditions on the transition probability matrices (TPM) of the Markov chains are established to introduce temporal correlation and satisfy statistical correlation constraints inducing the PARAFAC decomposition of the considered tensor. The proposed blind channel estimation algorithms are evaluated by means of computer simulations
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00417569
- URN
- urn:oai:HAL:hal-00417569v1
- Origin repository
- UNICA