The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells.
- Creators
- Courtney, Monica
- Gjernes, Elisabet
- Druelle, Noémie
- Ravaud, Christophe
- Vieira, Andhira
- Ben-Othman, Nouha
- Pfeifer, Anja
- Avolio, Fabio
- Leuckx, Gunter
- Lacas-Gervais, Sandra
- Burel-Vandenbos, Fanny
- Ambrosetti, Damien
- Hecksher-Sorensen, Jacob
- Ravassard, Philippe
- Heimberg, Harry
- Mansouri, Ahmed
- Collombat, Patrick
Description
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon(+) cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00968570
- URN
- urn:oai:HAL:hal-00968570v1
- Origin repository
- UNICA