Long wave asymptotics for the Euler–Korteweg system
- Creators
- Chiron, David
- Benzoni-Gavage, Sylvie
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Modélisation mathématique, calcul scientifique (MMCS) ; Institut Camille Jordan (ICJ) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- ANR-13-BS01-0009,BoND,Frontières, numérique, dispersion.(2013)
- ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
Description
The Euler–Korteweg system (EK) is a fairly general nonlinear waves model in mathematical physics that includes in particular the fluid formulation of the NonLinear Schrödinger equation (NLS). Several asymptotic regimes can be considered, regarding the length and the amplitude of waves. The first one is the free wave regime, which yields long acoustic waves of small amplitude. The other regimes describe a single wave or two counter propagating waves emerging from the wave regime. It is shown that in one space dimension those waves are governed either by inviscid Burgers or by Korteweg-de Vries equations, depending on the spatio-temporal and amplitude scalings. In higher dimensions, those waves are found to solve Kadomtsev-Petviashvili equations. Error bounds are provided in all cases. These results extend earlier work on defocussing (NLS) (and more specifically the Gross–Pitaevskii equation), and sheds light on the qualitative behavior of solutions to (EK), which is a highly nonlinear system of PDEs that is much less understood in general than (NLS).
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01221714
- URN
- urn:oai:HAL:hal-01221714v1
- Origin repository
- UNICA