Published April 24, 2024
| Version v1
Journal article
Focusing on Object Extremities for Tree Instance Segmentation in Forest Environments
Contributors
Others:
- Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (LITIS) ; Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)
- Modélisation, Information et Systèmes - UR UPJV 4290 (MIS) ; Université de Picardie Jules Verne (UPJV)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- ANR-18-CE33-0004,CLARA,Couplage Apprentissage et Vision pour Contrôle de Robots Aeriens(2018)
Description
As part of the development of many robotic systems for the forestry sector, forest scene understanding requires the use of computer vision algorithms. However, this dense and unstructured environment is complex and puts conventional detection approaches to the test. In the case of tree instance segmentation, the presence of closely spaced or even intertwined trees, their highly variable shapes, and complex masks due to their branches and leaves are just some of the challenges to be overcome. For this, specific learning of tree boundaries is required to better distinguish one from another. In this paper, we propose ConvexMask, a convolutional neural network for real-time instance segmentation. ConvexMask opts for a label representation approach with a convex exterior polygon, defined by tree extremities, and a binary mask to handle the detail and occlusions that the label may contain. Experiments conducted on the SynthTree43k dataset show that ConvexMask distinguishes tree extremities better than state-of-the-art networks, resulting in better-quality masks. The code is available at https://github.com/rcondat/convexmask
Abstract
International audienceAdditional details
Identifiers
- URL
- https://u-picardie.hal.science/hal-04561910
- URN
- urn:oai:HAL:hal-04561910v1
Origin repository
- Origin repository
- UNICA