Closed Form Inverse of Local Multi-Trace Operators
- Others:
- Algorithms and parallel tools for integrated numerical simulations (ALPINES) ; Laboratoire Jacques-Louis Lions (LJLL) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Section de mathématiques [Genève] ; Université de Genève = University of Geneva (UNIGE)
- ANR-15-CE23-0017,NonLocalDD,Méthodes non-locales en décomposition de domaines pour l'électromagnétisme(2015)
Description
Local Multi-Trace Formulations (local MTF) are block-sparse boundary integral equations adapted to elliptic PDEs with piece-wise constant coefficients (typically multi-subdomain scattering problems) only recently introduced in [Hiptmair & Jerez-Hanckes, 2012]. In these formulations, transmission conditions are enforced by means of local operators, so that only adjacent subdomains communicate. We are interested here in the inverse of local multi-trace operators. We show that this inverse can be obtained in closed form for a model problem with three subdomains in the special case where the coefficients are homogeneous. We illustrate our findings with a numerical experiment that shows that discretizing the closed form inverse gives indeed and approximate inverse of the discretized local multi-trace operator.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01427610
- URN
- urn:oai:HAL:hal-01427610v1
- Origin repository
- UNICA