Exercise-Induced Bronchoconstriction and the Air We Breathe
- Others:
- Department of Basic Sciences, Geisinger Commonwealth School of Medicine,
- Department of Physical Therapy, High Point University
- Laboratoire Motricité Humaine Expertise Sport Santé (LAMHESS) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université de Toulon (UTLN)-Université Côte d'Azur (UCA)
Description
An association between airway dysfunction and airborne pollutant inhalation exists. Volatilized airborne fluorocarbons in ski wax rooms, particulate matter, and trichloromines in indoor environments are suspect to high prevalence of exercise-induced bronchoconstriction and new-onset asthma in athletes competing in cross-country skiing, ice rink sports, and swimming. Ozone is implicated in acute decreases in lung function and the development of new-onset asthma from exposure during exercise. Mechanisms and genetic links are proposed for pollution-related new-onset asthma. Oxidative stress from airborne pollutant inhalation is a common thread to progression of airway damage. Key pollutants and mechanisms for each are discussed.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03027792
- URN
- urn:oai:HAL:hal-03027792v1
- Origin repository
- UNICA