Published 2022 | Version v1
Journal article

Dynamical analysis and optimization of a generalized resource allocation model of microbial growth

Others:
Université Côte d'Azur (UCA)
Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
Mathematics for Control, Transport and Applications (McTAO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre National de la Recherche Scientifique (CNRS)
Analyse, ingénierie et contrôle des micro-organismes (MICROCOSME) ; Inria Grenoble - Rhône-Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA)
Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
ANR-17-CE40-0024,Maximic,Contrôle optimal de cellules microbiennes - stratégies naturelles et synthétiques(2017)
ANR-11-LABX-0028,SIGNALIFE,Réseau d'Innovation sur les Voies de Signalisation en Sciences de la Vie(2011)

Description

Gaining a better comprehension of the growth of microorganisms is a major scientific challenge, which has often been approached from a resource allocation perspective. Simple mathematical self-replicator models based on resource allocation principles have been surprisingly effective in accounting for experimental observations of the growth of microorganisms. Previous work, using a three-variable resource allocation model, predicted an optimal resource allocation scheme for the adaptation of microbial cells to a sudden nutrient change in the environment. We here propose an extended version of this model considering also proteins responsible for basic housekeeping functions, and we study their impact on predicted optimal strategies for resource allocation following changes in the environment. A full dynamical analysis of the system shows there is a single globally attractive equilibrium, which can be related to steady-state growth conditions of bacteria observed in experiments. We then explore the optimal allocation strategies using optimization and optimal control theory. We show that the solutions to this dynamical problem have a complicated structure that includes a second-order singular arc given in feedback form, and characterized by i) Fuller's phenomenon, and ii) the turnpike effect, producing a very particular asymptotic behaviour towards the solution of the static optimization problem. Our work thus provides a generalized perspective on the analysis of microbial growth by means of simple self-replicator models.

Abstract

International audience

Additional details

Created:
December 7, 2023
Modified:
December 7, 2023