Multi-Sensor-Based Predictive Control For Autonomous Parking
- Others:
- École Centrale de Nantes (ECN)
- Laboratoire des Sciences du Numérique de Nantes (LS2N) ; Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) ; Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Intelligence artificielle et algorithmes efficaces pour la robotique autonome (ACENTAURI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
This paper formalizes, under a single common Multi-Sensor-Based Predictive Control framework, five different types of parking maneuvers: perpendicular, diagonal for both forward and backward motions and parallel for backward motions. Since, from a practical point of view, forward parallel parking is usually not advisable, it is not addressed in this work. By moving the effort from motion planning to control, the parking tasks can be completely defined solely from the detected empty parking spots. Additionally, the classical compromise between completeness and computational efficiency when compared to exploration-based path planning techniques is eliminated. The results of a few individual cases are presented and compared against a state of the art path planning approach to illustrate the behavior and performance of the proposed framework as well as results from exhaustive simulations to assess its convergence. As shown in the convergence analyses, the presented approach allows to park from virtually any sensible initial pose. Finally, real experimentation using a robotized Renault ZOE shows the validity and robustness in the convergence domain of the presented approach.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03286432
- URN
- urn:oai:HAL:hal-03286432v1
- Origin repository
- UNICA