Published June 15, 2009
| Version v1
Conference paper
Galaxy Decomposition in Multispectral Images Using Markov Chain Monte Carlo Algorithms
- Others:
- Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection (LSIIT) ; Centre National de la Recherche Scientifique (CNRS)
- Observatoire de la Côte d'Azur (OCA) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Arnt-B{\o}rre Salberg and Jon Yngve Hardeberg and Robert Jenssen
Description
Astronomers still lack a multiwavelength analysis scheme for galaxy classification. In this paper we propose a way of analysing multispectral observations aiming at refining existing classifications with spectral information. We propose a global approach which consists of decomposing the galaxy into a parametric model using physically meaningful structures. Physical interpretation of the results will be straightforward even if the method is limited to regular galaxies. The proposed approach is fully automatic and performed using Markov Chain Monte Carlo (MCMC) algorithms. Evaluation on simulated and real 5-band images shows that this new method is robust and accurate.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00749593
- URN
- urn:oai:HAL:hal-00749593v1
- Origin repository
- UNICA