Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis
- Others:
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) ; Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- PEPS BMI 2012-2013 Estimation of dependence graphs for thalamo-cortical neurons and multivariate Hawkes processes.
- ANR-11-BS01-0010,Calibration,Calibration statistique(2011)
Description
When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model. In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov- Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model, that have to be consistent with a controlled rate of convergence. Some non parametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task.
Additional details
- URL
- https://hal.science/hal-00789127
- URN
- urn:oai:HAL:hal-00789127v2
- Origin repository
- UNICA