Published October 1, 2012
| Version v1
Conference paper
Topology preserving atlas construction from shape data without correspondence using sparse parameters.
Contributors
Others:
- Analysis and Simulation of Biomedical Images (ASCLEPIOS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Equipe NEMESIS - Centre de Recherches de l'Institut du Cerveau et de la Moelle épinière (NEMESIS-CRICM) ; Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Scientific Computing and Imaging Institute (SCI Institute) ; University of Utah
- University of Utah
- Centre de Mathématiques et de Leurs Applications (CMLA) ; École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- This work has been supported by NIH grants U54 EB005149 (NA-MIC), 1R01 HD067731, 5R01 EB007688, 2P41 RR0112553-12.
- Nicholas Ayache and Hervé Delingette and Polina Golland and Kensaku Mori
Description
Statistical analysis of shapes, performed by constructing an atlas composed of an average model of shapes within a population and associated deformation maps, is a fundamental aspect of medical imaging studies. Usual methods for constructing a shape atlas require point correspondences across subjects, which are difficult in practice. By contrast, methods based on currents do not require correspondence. However, existing atlas construction methods using currents suffer from two limitations. First, the template current is not in the form of a topologically correct mesh, which makes direct analysis on shapes difficult. Second, the deformations are parametrized by vectors at the same location as the normals of the template current which often provides a parametrization that is more dense than required. In this paper, we propose a novel method for constructing shape atlases using currents where topology of the template is preserved and deformation parameters are optimized independently of the shape parameters. We use an L1-type prior that enables us to adaptively compute sparse and low dimensional parameterization of deformations. We show an application of our method for comparing anatomical shapes of patients with Down's syndrome and healthy controls, where the sparse parametrization of diffeomorphisms decreases the parameter dimension by one order of magnitude.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00818415
- URN
- urn:oai:HAL:hal-00818415v1
Origin repository
- Origin repository
- UNICA