The Graph Coloring Game on 4 × n-Grids
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Laboratoire d'Informatique Fondamentale d'Orléans (LIFO) ; Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB)
- Parallelism, Graphs and Optimization Research Group (ParGO) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
- équipe associée inria CANOE
- CAPES-Cofecub project Ma 1004/2
- Inria
- ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
- ANR-21-CE48-0001,P-GASE,Jeux positionnels : complexité, algorithmes et stratégies(2021)
- ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
Description
The graph coloring game is a famous two-player game (re)introduced by Bodlaender in 1991. Given a graph G and k ∈ N, Alice and Bob alternately (starting with Alice) color an uncolored vertex with some color in {1, • • • , k} such that no two adjacent vertices receive a same color. If eventually all vertices are colored, then Alice wins and Bob wins otherwise. The game chromatic number χg(G) is the smallest integer k such that Alice has a winning strategy with k colors in G. It has been recently (2020) shown that, given a graph G and k ∈ N, deciding whether χg(G) ≤ k is PSPACE-complete. Surprisingly, this parameter is not well understood even in "simple" graph classes. Let Pn denote the path with n ≥ 1 vertices. For instance, in the case of Cartesian grids, it is easy to show that χg(Pm□Pn) ≤ 5 since χg(G) ≤ ∆ + 1 for any graph G with maximum degree ∆. However, the exact value is only known for small values of m, namely χg(P1□Pn) = 3, χg(P2□Pn) = 4 and χg(P3□Pn) = 4 for n ≥ 4 [Raspaud, Wu, 2009]. Here, we prove that, for every n ≥ 18, χg(P4□Pn) = 4.
Additional details
- URL
- https://hal.science/hal-04852351
- URN
- urn:oai:HAL:hal-04852351v1
- Origin repository
- UNICA