A distributed algorithm for computing and updating the process number of a forest
- Creators
- Coudert, David
- Huc, Florian
- Mazauric, Dorian
- Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ist fet Aeolus, COST 293 Graal, crc Corso with France Telecom R&D
- INRIA
Description
In this paper, we present a distributed algorithm to compute various parameters of a tree such as the process number, the edge search number or the node search number and so the pathwidth. This algorithm requires n steps, an overall computation time of O(n log(n)), and n messages of size log_3(n)+3. We then propose a distributed algorithm to update the process number (or the node search number, or the edge search number) of each component of a forest after adding or deleting an edge. This second algorithm requires O(D) steps, an overall computation time of O(D log(n)), and O(D) messages of size log_3(n)+3, where D is the diameter of the modified connected component. Finally, we show how to extend our algorithms to trees and forests of unknown size using messages of less than 2a+4+e bits, where a is the parameter to be determined and e=1 for updates algorithms.
Additional details
- URL
- https://hal.inria.fr/inria-00288304
- URN
- urn:oai:HAL:inria-00288304v3
- Origin repository
- UNICA