Published April 7, 2016
| Version v1
Publication
Incremental rule learning based on example nearness from numerical data streams
Description
Mining data streams is a challenging task that requires online systems based on incremental learning approaches. This paper describes a classification system based on decision rules that may store up-to-date border examples to avoid unnecessary revisions when virtual drifts are present in data. Consistent rules classify new test examples by covering and inconsistent rules classify them by distance as the nearest neighbor algorithm. In addition, the system provides an implicit forgetting heuristic so that positive and negative examples are removed from a rule when they are not near one another.
Additional details
- URL
- https://idus.us.es/handle/11441/39713
- URN
- urn:oai:idus.us.es:11441/39713
- Origin repository
- USE