Published January 18, 2019 | Version v1
Publication

Clustering learning for robotic vision

Description

We present the clustering learning technique applied to multi-layer feedforward deep neural networks. We show that this unsupervised learning technique can compute network filters with only a few minutes and a much reduced set of parameters. The goal of this paper is to promote the technique for general-purpose robotic vision systems. We report its use in static image datasets and object tracking datasets. We show that networks trained with clustering learning can outperform large networks trained for many hours on complex datasets.

Additional details

Identifiers

URL
https://idus.us.es/handle//11441/81744
URN
urn:oai:idus.us.es:11441/81744

Origin repository

Origin repository
USE