Published September 16, 2013 | Version v1
Conference paper

Embarrassingly Parallel Search

Description

We propose the Embarrassingly Parallel Search, a simple and efficient method for solving constraint programming problems in parallel. We split the initial problem into a huge number of independent subproblems and solve them with available workers (i.e., cores of machines). The decomposition into subproblems is computed by selecting a subset of variables and by enumerating the combinations of values of these variables that are not detected inconsistent by the propagation mechanism of a CP Solver. The experiments on satisfaction problems and on optimization problems suggest that generating between thirty and one hundred subproblems per worker leads to a good scalability. We show that our method is quite competitive with the work stealing approach and able to solve some classical problems at the maximum capacity of the multi-core machines. Thanks to it, a user can parallelize the resolution of its problem without modifying the solver or writing any parallel source code and can easily replay the resolution of a problem.

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 29, 2023