Published December 2021 | Version v1
Journal article

Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review

Others:
Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC)
Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
GIPSA - Signal Images Physique (GIPSA-SIGMAPHY) ; GIPSA Pôle Sciences des Données (GIPSA-PSD) ; Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
Département Mathematical and Electrical Engineering (IMT Atlantique - MEE) ; IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées
University of Florida [Gainesville] (UF)
GIPSA - Vision and Brain Signal Processing (GIPSA-VIBS) ; GIPSA Pôle Sciences des Données (GIPSA-PSD) ; Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)

Description

The final version of this paper can be found in the IEEE Geoscience and Remote Sensing Magazine. The spectral signatures of the materials contained in hyperspectral images, also called endmembers (EM), can be significantly affected by variations in atmospheric, illumination or environmental conditions typically occurring within an image. Traditional spectral unmixing (SU) algorithms neglect the spectral variability of the endmembers, what propagates significant mismodeling errors throughout the whole unmixing process and compromises the quality of its results. Therefore, large efforts have been recently dedicated to mitigate the effects of spectral variability in SU. This resulted in the development of algorithms that incorporate different strategies to allow the EMs to vary within a hyperspectral image, using, for instance, sets of spectral signatures known a priori, Bayesian, parametric, or local EM models. Each of these approaches has different characteristics and underlying motivations. This paper presents a comprehensive literature review contextualizing both classic and recent approaches to solve this problem. We give a detailed evaluation of the sources of spectral variability and their effect in image spectra. Furthermore, we propose a new taxonomy that organizes existing works according to a practitioner's point of view, based on the necessary amount of supervision and on the computational cost they require. We also review methods used to construct spectral libraries (which are required by many SU techniques) based on the observed hyperspectral image, as well as algorithms for library augmentation and reduction. Finally, we conclude the paper with some discussions and an outline of possible future directions for the field.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
December 1, 2023