Published 2010
| Version v1
Journal article
Near optimal thresholding estimation of a Poisson intensity on the real line
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Mathématiques d'Orsay (LM-Orsay) ; Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Département de Mathématiques et Applications - ENS Paris (DMA) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Description
The purpose of this paper is to estimate the intensity of a Poisson process $N$ by using thresholding rules. In this paper, the intensity, defined as the derivative of the mean measure of $N$ with respect to $ndx$ where $n$ is a fixed parameter, is assumed to be non-compactly supported. The estimator $\tilde{f}_{n,\gamma}$ based on random thresholds is proved to achieve the same performance as the oracle estimator up to a possible logarithmic term. Then, minimax properties of $\tilde{f}_{n,\gamma}$ on Besov spaces ${\cal B}^{\al}_{p,q}$ are established. Under mild assumptions, we prove that $$\sup_{f\in {\cal B}^{\al}_{p,q}\cap\L_{\infty}}\E(\normp{\tilde{f}_{n,\gamma}-f}^2)\leq C\left(\frac{\ln n}{n}\right)^{\frac{\al}{\al+\frac{1}{2}+\left(\frac{1}{2}-\frac{1}{p}\right)_+}}$$ and the lower bound of the minimax risk for ${\cal B}^{\al}_{p,q}\cap\L_{\infty}$ coincides with the previous upper bound up to the logarithmic term. This new result has two consequences. First, it establishes that the minimax rate of Besov spaces ${\cal B}^\al_{p,q}$ with $p\leq 2$ when non compactly supported functions are considered is the same as for compactly supported functions up to a logarithmic term. When $p> 2$, the rate exponent, which depends on $p$, deteriorates when $p$ increases, which means that the support plays a harmful role in this case. Furthermore, $\tilde{f}_{n,\gamma}$ is adaptive minimax up to a logarithmic term.
Abstract
77 pagesAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00634406
- URN
- urn:oai:HAL:hal-00634406v1
Origin repository
- Origin repository
- UNICA