Published November 2020 | Version v1
Journal article

Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii

Description

Cytochrome P450 monooxygenases (P450s) are highly conserved multifunctional enzymes that play crucial roles in insecticide resistance development. In this study, the molecular mechanisms of P450s in acetamiprid resistance development to melon aphid, Aphis gossypii was investigated. Acetamiprid resistant (32.64-fold resistance) population (Ace-R) of A. gossypii was established by continuous selection with acetamiprid for 24 generations. Quantitative Real Time PCR was carried out to analyze the expression of P450 genes in both acetamiprid resistant (Ace-R) and susceptible (Ace-S) strains. Result showed that nine genes (CYP6CY14, CYP6DC1, CYP6CZ1, CYP6DD1, CYP6CY5, CYP6CY9, CYP6DA1, CYP6CY18, and CYP6CY16) of CYP3 clade, four genes (CYP302A1, CYP315A1, CYP301A1, and CYP314A1) of CYP2 clade, two genes (CYP4CK1, CYP4G51) of CYP4 clade and three genes (CYP306A1, CYP305E1, CYP307A1) of mitochondrial clade (Mito clad) were significantly up-regulated, in Ace-R compared to Ace-S strain. Whilst CYP4CJ2 gene from (CYP4 clade) was significantly down-regulated in Ace-R strain. Furthermore, RNA interference-mediated knockdown of CYP6CY14, CYP6DC1, and CYP6CZ1 genes significantly increased the sensitivity of Ace-R strain to acetamiprid. Taken together, this study showed that P450 genes especially CYP6CY14, CYP6DC1 and CYP6CZ1 are potentially involved in acetamiprid resistance development in A. gossypii. This study could be useful to understand the molecular basis of acetamiprid resistance mechanism in A. gossypii.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023