Published December 19, 2005 | Version v1
Publication

Evolution of the Phase-Space Density of Dark Matter Halos and Mixing Effects in Merger Events

Description

Cosmological N-body simulations were performed to study the evolution of the phase-space density Q = rho/sigma^3 of dark matter halos. No significant differences in the scale relations Q ~ sigma^(-2.1) or Q ~ M^(-0.82) are seen for "cold" or "warm" dark matter models. The follow up of individual halos from z = 10 up to the present time indicate the existence of two main evolutionary phases: an early and fast one (10 > z > 6.5), in which Q decreases on the average by a factor of 40 as a consequence of the randomization of bulk motions and a late and long one (6.5 > z > 0), in which Q decreases by a factor of 20 because of mixing induced by merger events. The study of these halos has also evidenced that rapid and positive variations of the velocity dispersion, induced by merger episods, are related to a fast decrease of the phase density Q.

Abstract

6 pages, accepted by MNRAS

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023