Published February 20, 2024 | Version v1
Publication

Generating PET-derived maps of myelin content from clinical MRI using curricular discriminator training in generative adversarial networks

Others:
Institut du Cerveau = Paris Brain Institute (ICM) ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Universidade de São Paulo Medical School (FMUSP)
Algorithms, models and methods for images and signals of the human brain = Algorithmes, modèles et méthodes pour les images et les signaux du cerveau humain [ICM Paris] (ARAMIS) ; Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM) ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
CEA- Saclay (CEA) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)
The research leading to these results has received funding from the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10- IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo- Universitaire-6), and from ICM under the Big Brain Theory program (project IMAGIN-DEALin MS). This work was supported by the Fondation pour la Recherche Médicale, grant number FDM202006011247 to Théodore Soulier and by the Fondation Sorbonne Université to Mariem Hamzaoui. Nicholas Ayache's research is also partially funded by the 3IA Côte d'Azur (reference number ANR-19-P3IA-0002). PET MRI acquisitions from Brazil were funded by General Electrics Healthcare, No.12496139131.
ANR-10- IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo- Universitaire-6)
ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)

Description

Multiple sclerosis (MS) is a demyenalinating inflammatory neurological disease. In vivo biomarkers of myelin content are of major importance for patient care and clinical trials. Positron Emission Tomography (PET) with Pittsburgh Compound B (PiB) provides a specific myelin marker. However, it is not available in clinical routine. In this paper, we propose a method to generate myelin maps by synthesizing PiB PET from clinical routine MRI sequences (T1-weighted and FLAIR). To that purpose, we introduce a new curriculum learning strategy for training generative adversarial networks (GAN). Specifically, we design a curricular approach for training the discriminator: training starts with only lesion patches and random patches (from anywhere in the white matter) are progressively introduced. We relied on two distinct cohorts of MS patients acquired each on a different scanner and in a different country. One cohort was used for training/validation and the other one for testing. We found that the synthetic PiB PET was strongly correlated to the ground-truth both at the lesion level (r = 0.70, p < 10-5) and the patient level (r = 0.74, p < 10-5). Moreover, the correlations were stronger when using the curricular learning strategy compared to starting the discriminator training from random patches. Our results demonstrate the interest of this new curriculum learning strategy for PET image synthesis. Even though further evaluations are needed, our approach has the potential to provide a useful biomarker for clinical routine follow-up of patients with MS.

Abstract

International audience

Additional details

Created:
December 29, 2023
Modified:
December 29, 2023