Published March 2013
| Version v1
Journal article
An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model
Creators
Contributors
Others:
- Control, Analysis and Simulations for TOkamak Research (CASTOR) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We propose an original scheme for the time discretization of a triphasic Cahn- Hilliard/Navier-Stokes model. This scheme allows an uncoupled resolution of the discrete Cahn-Hilliard and Navier-Stokes system, is unconditionally stable and preserves, at the discrete level, the main properties of the continuous model. The existence of discrete solutions is proved and a convergence study is performed in the case where the densities of the three phases are the same.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00577226
- URN
- urn:oai:HAL:hal-00577226v2
Origin repository
- Origin repository
- UNICA