Published July 6, 2018 | Version v1
Publication

Hardware dedicado para sistemas empotrados de visión

Description

La constante evolución de las Tecnologías de la Información y las Comunicaciones no solo ha permitido que más de la mitad de la población mundial esté actualmente interconectada a través de Internet, sino que ha sido el caldo de cultivo en el que han surgido nuevos paradigmas, como el 'Internet de las cosas' (IoT) o la 'Inteligencia ambiental' (AmI), que plantean la necesidad de interconectar objetos con distintas funcionalidades para lograr un entorno digital, sensible y adaptativo, que proporcione servicios de muy distinta índole a sus usuarios. La consecución de este entorno requiere el desarrollo de dispositivos electrónicos de bajo coste que, con tamaño y peso reducido, sean capaces de interactuar con el medio que los rodea, operar con máxima autonomía y proporcionar un elevado nivel de inteligencia. La funcionalidad de muchos de estos dispositivos incluirá la capacidad para adquirir, procesar y transmitir imágenes, extrayendo, interpretando o modificando la información visual que resulte de interés para una determinada aplicación. En el marco de este desafío surge la presente Tesis Doctoral, cuyo eje central es el desarrollo de hardware dedicado para la implementación de algoritmos de procesamiento de imágenes y secuencias de vídeo usados en sistemas empotrados de visión. El trabajo persigue una doble finalidad. Por una parte, la búsqueda de soluciones que, por sus prestaciones y rendimiento, puedan ser incorporadas en sistemas que satisfagan las estrictas exigencias de funcionalidad, tamaño, consumo de energía y velocidad de operación demandadas por las nuevas aplicaciones. Por otra, el diseño de una serie de bloques funcionales implementados como módulos de propiedad intelectual, que permitan aliviar la carga computacional de las unidades de procesado de los sistemas en los que se integren. En la Tesis se proponen soluciones específicas para la implementación de dos tipos de operaciones habitualmente presentes en muchos sistemas de visión artificial: la sustracción de fondo y el etiquetado de componentes conexos. Las distintas alternativas surgen como consecuencia de aplicar una adecuada relación de compromiso entre funcionalidad y coste, entendiendo este último criterio en términos de recursos de cómputo, velocidad de operación y potencia consumida, lo que permite cubrir un amplio espectro de aplicaciones. En algunas de las soluciones propuestas se han utilizado además, técnicas de inferencia basadas en Lógica Difusa con idea de mejorar la calidad de los sistemas de visión resultantes. Para la realización de los diferentes bloques funcionales se ha seguido una metodología de diseño basada en modelos, que ha permitido la realización de todo el ciclo de desarrollo en un único entorno de trabajo. Dicho entorno combina herramientas informáticas que facilitan las etapas de codificación algorítmica, diseño de circuitos, implementación física y verificación funcional y temporal de las distintas alternativas, acelerando con ello todas las fases del flujo de diseño y posibilitando una exploración más eficiente del espacio de posibles soluciones. Asimismo, con el objetivo de demostrar la funcionalidad de las distintas aportaciones de esta Tesis Doctoral, algunas de las soluciones propuestas han sido integradas en sistemas de vídeo reales, que emplean buses estándares de uso común. Los dispositivos seleccionados para llevar a cabo estos demostradores han sido FPGAs y SoPCs de Xilinx, ya que sus excelentes propiedades para el prototipado y la construcción de sistemas que combinan componentes software y hardware, los convierten en candidatos ideales para dar soporte a la implementación de este tipo de sistemas.

Abstract

The continuous evolution of the Information and Communication Technologies (ICT), not only has allowed more than half of the global population to be currently interconnected through Internet, but it has also been the breeding ground for new paradigms such as Internet of Things (ioT) or Ambient Intelligence (AmI). These paradigms expose the need of interconnecting elements with different functionalities in order to achieve a digital, sensitive, adaptive and responsive environment that provides services of distinct nature to the users. The development of low cost devices, with small size, light weight and a high level of autonomy, processing power and ability for interaction is required to obtain this environment. Attending to this last feature, many of these devices will include the capacity to acquire, process and transmit images, extracting, interpreting and modifying the visual information that could be of interest for a certain application. This PhD Thesis, focused on the development of dedicated hardware for the implementation of image and video processing algorithms used in embedded systems, attempts to response to this challenge. The work has a two-fold purpose: on one hand, the search of solutions that, for its performance and properties, could be integrated on systems with strict requirements of functionality, size, power consumption and speed of operation; on the other hand, the design of a set of blocks that, packaged and implemented as IP-modules, allow to alleviate the computational load of the processing units of the systems where they could be integrated. In this Thesis, specific solutions for the implementation of two kinds of usual operations in many computer vision systems are provided. These operations are background subtraction and connected component labelling. Different solutions are created as the result of applying a good performance/cost trade-off (approaching this last criteria in terms of area, speed and consumed power), able to cover a wide range of applications. Inference techniques based on Fuzzy Logic have been applied to some of the proposed solutions in order to improve the quality of the resulting systems. To obtain the mentioned solutions, a model based-design methodology has been applied. This fact has allowed us to carry out all the design flow from a single work environment. That environment combines CAD tools that facilitate the stages of code programming, circuit design, physical implementation and functional and temporal verification of the different algorithms, thus accelerating the overall processes and making it possible to explore the space of solutions. Moreover, aiming to demonstrate the functionality of this PhD Thesis's contributions, some of the proposed solutions have been integrated on real video systems that employ common and standard buses. The devices selected to perform these demonstrators have been FPGA and SoPCs (manufactured by Xilinx) since, due to their excellent properties for prototyping and creating systems that combine software and hardware components, they are ideal to develop these applications.

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023