One-class Machines Based on the Coherence Criterion
- Creators
- Noumir, Zineb
- Honeine, Paul
- Richard, Cédric
- Others:
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- ANR-08-SECU-0013,VIGIRES'EAU,Surveillance en temps réel de la qualité de l'eau potable d'un réseau de distribution en vue de la détection d'intrusions(2008)
Description
The one-class classification problemis often addressed by solving a constrained quadratic optimization problem, in the same spirit as support vector machines. In this paper, we derive a novel one-class classification approach, by investigating an original sparsification criterion. This criterion, known as the coherence criterion, is based on a fundamental quantity that describes the behavior of dictionaries in sparse approximation problems. The proposed framework allows us to derive new theoretical results. We associate the coherence criterion with a one-class classification algorithm by solving a least-squares optimization problem. We also provide an adaptive updating scheme. Experiments are conducted on real datasets and time series, illustrating the relevance of our approach to existing methods in both accuracy and computational efficiency.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01966025
- URN
- urn:oai:HAL:hal-01966025v1
- Origin repository
- UNICA