Published 2024
| Version v1
Conference paper
Rényi Pufferfish Privacy: General Additive Noise Mechanisms and Privacy Amplification by Iteration via Shift Reduction Lemmas
Contributors
Others:
- Craft AI
- Machine Learning in Information Networks (MAGNET) ; Centre Inria de l'Université de Lille ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Médecine de précision par intégration de données et inférence causale (PREMEDICAL) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Desbrest d'Epidémiologie et de Santé Publique (IDESP) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
- Institut Desbrest d'Epidémiologie et de Santé Publique (IDESP) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
- ANR-20-CE23-0015,PRIDE,Apprentissage automatique décentralisé et préservant la vie privée(2020)
- ANR-22-PECY-0002,iPoP,interdisciplinary Project on Privacy(2022)
Description
Pufferfish privacy is a flexible generalization of differential privacy that allows to model arbitrary secrets and adversary's prior knowledge about the data. Unfortunately, designing general and tractable Pufferfish mechanisms that do not compromise utility is challenging. Furthermore, this framework does not provide the composition guarantees needed for a direct use in iterative machinelearning algorithms. To mitigate these issues, we introduce a Rényi divergence-based variant of Pufferfish and show that it allows us to extend the applicability of the Pufferfish framework. We first generalize the Wasserstein mechanism to cover a wide range of noise distributions and introduce several ways to improve its utility. Finally, as an alternative to composition, we prove privacy amplification results for contractive noisy iterations and showcase the first use of Pufferfish in private convex optimization. A common ingredient underlying our results is the use and extension of shift reduction lemmas.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-04363020
- URN
- urn:oai:HAL:hal-04363020v2
Origin repository
- Origin repository
- UNICA