Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis
- Others:
- Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences ; University of Glasgow
- Interactions plantes-microorganismes et santé végétale ; Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut Jean-Pierre Bourgin (IJPB) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Agence Nationale de la Recherche : ANR-11-BSV6-018 ; French Ministry of National Education and Research ; LabEx Saclay Plant Sciences-SPS : ANR-10-LABX-0040-SPS ; LabEx TULIP : ANR-10-LABX-41
Description
Soil water uptake by roots is a key component of plant performance and adaptation to adverse environments. Here, we use a genome-wide association analysis to identify the XYLEM NAC DOMAIN 1 (XND1) transcription factor as a negative regulator of Arabidopsis root hydraulic conductivity (Lp(r)). The distinct functionalities of a series of natural XND1 variants and a single nucleotide polymorphism that determines XND1 translation efficiency demonstrate the significance of XND1 natural variation at species-wide level. Phenotyping of xnd1 mutants and natural XND1 variants show that XND1 modulates Lpr through action on xylem formation and potential indirect effects on aquaporin function and that it diminishes drought stress tolerance. XND1 also mediates the inhibition of xylem formation by the bacterial elicitor flagellin and counteracts plant infection by the root pathogen Ralstonia solanacearum. Thus, genetic variation at XND1, and xylem differentiation contribute to resolving the major trade-off between abiotic and biotic stress resistance in Arabidopsis.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01918090
- URN
- urn:oai:HAL:hal-01918090v1
- Origin repository
- UNICA