Published December 2002
| Version v1
Journal article
Circular Cylinders by Four or Five Points in Space
- Others:
- Geometric computing (GEOMETRICA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Department of Computer Science (Brown University) ; Brown University
- Calcul formel (CALFOR) ; Laboratoire d'Informatique de Paris 6 (LIP6) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Description
We are interested in computing effectively cylinders through 5 points, and in other problems involved in metrology. In particular, we consider the cylinders through 4 points with a fix radius and with extremal radius. For these different problems, we give bounds on the number of solutions and exemples show that these bounds are optimal. Finally, we describe two algebraic methods which can be used here to solve efficiently these problems and some experimentation results.
Abstract
International audience
Additional details
- URL
- https://inria.hal.science/inria-00090648
- URN
- urn:oai:HAL:inria-00090648v1
- Origin repository
- UNICA