Parallelised production of fine and calibrated emulsions by coupling flow-focusing technique and partial wetting phenomenon
- Others:
- Laboratoire Colloïdes et Matériaux Divisés (LCMD) ; Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de physique de la matière condensée (LPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Gulliver (UMR 7083) ; Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Liquides Ioniques et Interfaces Chargées (LI2C) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Description
The capacity of microfluidic technology to fabricate monodisperse emulsion droplets is well estab- lished. Parallelisation of droplet production is a pre- requisite for using such an approach for making high- quality materials for either fundamental or industrial applications where product quantity matters. Here, we investigate the emulsification efficiency of parallelised drop generators based on a flow-focusing geometry when incorporating the role of partial wetting in order to make emulsion droplets with a diameter below 10 µm. Confine- ment intrinsically encountered in microsystems intensifies the role played by interfaces between liquids and solids. We thus take advantage of partial wetting to enhance the maximum confinement accessible due to liquid flow focusing. We compare the performances brought by partial wetting to more established routes such as step emulsifi- cation. We show that the step configuration and the partial wetting regime are both well suited for being parallelised and thus open the way to the production of fine and cali- brated emulsions for further applications. Finally, this new route of emulsification that exploits partial wetting between the fluids and the channel walls opens possibilities to the formation of substantially smaller droplets, as required in many fields of application
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00991916
- URN
- urn:oai:HAL:hal-00991916v1
- Origin repository
- UNICA