Supervised learning of analysis-sparsity priors with automatic differentiation
- Others:
- GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA) ; Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
- Institut de Mathématiques de Bourgogne [Dijon] (IMB) ; Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Institut Montpelliérain Alexander Grothendieck (IMAG) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Sparsity priors are commonly used in denoising and image reconstruction. For analysis-type priors, a dictionary defines a representation of signals that is likely to be sparse. In most situations, this dictionary is not known, and is to be recovered from pairs of ground-truth signals and measurements, by minimizing the reconstruction error. This defines a hierarchical optimization problem, which can be cast as a bi-level optimization. Yet, this problem is unsolvable, as reconstructions and their derivative w.r.t. the dictionary have no closed-form expression. However, reconstructions can be iteratively computed using the Forward-Backward splitting (FB) algorithm. In this paper, we approximate reconstructions by the output of the aforementioned FB algorithm. Then, we leverage automatic differentiation to evaluate the gradient of this output w.r.t. the dictionary, which we learn with projected gradient descent. Experiments show that our algorithm successfully learns the 1D Total Variation (TV) dictionary from piecewise constant signals. For the same case study, we propose to constrain our search to dictionaries of 0centered columns, which removes undesired local minima and improves numerical stability.
Abstract
5 pages, 4 figures
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03518852
- URN
- urn:oai:HAL:hal-03518852v1
- Origin repository
- UNICA