Published 2013
| Version v1
Journal article
Grassmann secants and linear systems of tensors
Contributors
Others:
- University of Trento [Trento]
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Dipartimento di Ingegneria della produzione, termoenergetica e modelli matematici (DIPTEM) ; Università degli studi di Genova = University of Genoa (UniGe)
- Department of Mathematics and Computer Science / Dipartimento di Scienze Matematiche e Informatiche "Roberto Magari" (DSMI) ; Università degli Studi di Siena = University of Siena (UNISI)
- European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010)
Description
For any irreducible non-degenerate variety $X \subset \mathbb{P}^r$ , we relate the dimension of the $s$-th secant varieties of the Segre embedding of $\mathbb{P}^k\times X$ to the dimension of the $(k,s)$-Grassmann secant variety $GS_X(k,s)$ of $X$. We also give a criterion for the $s$-identifiability of $X$.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/inria-00637780
- URN
- urn:oai:HAL:inria-00637780v1
Origin repository
- Origin repository
- UNICA