Minimal selectors and fault tolerant networks
- Others:
- Département de Mathématiques et Applications - ENS Paris (DMA) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre Universitaire d'Informatique ; Université de Genève = University of Geneva (UNIGE)
- This work has been partially supported by European project IST FET AEOLUS
Description
In this paper we study a combinatorial optimization problem issued from on-board networks in satellites. In this kind of networks the entering signals (inputs) should be routed to amplifiers (outputs). The connections are made via expensive switches with four links available. The paths connecting inputs to outputs should be link-disjoint. More formally, we call it $\plk-$network an undirected graph with $p+\lambda$ inputs, $p+k$ outputs and internal vertices of degree four. A $\plk-$network is valid if it is tolerant to a restricted number of faults in the network, i.e. if for any choice of at most $k$ faulty inputs and $\lambda$ faulty outputs, there exist $p$ edge-disjoint paths from the remaining inputs to the remaining outputs. In the special case $\lambda=0$, a $\plk-$network is already known as a selector. Our optimization problem consists of determining $N\plk$, the minimum number of nodes in a valid $\plk-$network. For this, we present validity certificates and a gluing lemma from which derive lower bounds for $N\plk$. We also provide constructions, and hence upper bounds, based on expanders. The problem is very sensitive to the order of $\lambda$ and $k$. For instance, when $\lambda$ and $k$ are small compared to $p$, the question reduces to avoid certain forbidden local configurations. For larger values of $\lambda$ and $k$, the problem is to find graphs with a good expansion property for small sets. This leads us to introduce a new parameter called $\alpha$-robustness. We use $\alpha$-robustness to generalize our constructions to higher order values of $k$ and $\lambda$. In many cases, we provide asymptotically tight bounds for $N\plk$.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00485848
- URN
- urn:oai:HAL:inria-00485848v1
- Origin repository
- UNICA