Published May 13, 2020 | Version v1
Publication

Reduced sensitivity of the (d,p) cross sections to the deuteron model beyond adiabatic approximation

Description

It has recently been reported [Phys. Rev. Lett. 117, 162502 (2016)] that (d,p) cross sections can be very sensitive to the n-p interactions used in the adiabatic treatment of deuteron breakup with nonlocal nucleon-target optical potentials. To understand to what extent this sensitivity could originate in the inaccuracy of the adiabatic approximation we have developed a leading-order localequivalent continuum-discretized coupled-channel model that accounts for non-adiabatic effects in the presence of nonlocality of nucleon optical potentials. We have applied our model to the astrophysically relevant reaction 26mAl(d,p)27Al using two different n-p potentials associated with the lowest and the highest n-p kinetic energy in the short-range region of their interaction, respectively. Our calculations reveal a significant reduction of the sensitivity to the high n-p momenta thus confirming that it is mostly associated with theoretical uncertainties of the adiabatic approximation itself. The non-adiabatic effects in the presence of nonlocality were found to be stronger than those in the case of the local optical potentials. These results argue for extending the analysis of the (d,p) reactions, measured for spectroscopic studies, beyond the adiabatic approximation.

Abstract

United Kingdom Science

Abstract

Technology Facilities Council (STFC)

Abstract

Spanish Ministerio de Educación, Cultura y Deporte, Ref: FPU13/04109

Additional details

Created:
March 27, 2023
Modified:
December 1, 2023