Published 2018 | Version v1
Journal article

Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time

Others:
Computational Imaging of the Central Nervous System (ATHENA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Center for NeuroImaging Research-Human MRI Neuroimaging core facility for clinical research [ICM Paris] (CENIR) ; Institut du Cerveau = Paris Brain Institute (ICM) ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
MAXIM's
ANR-13-MONU-0009,MOSIFAH,Modélisation et simulation multimodales et multiéchelles de l'architecture des fibres myocardiques du cœur humain(2013)
ANR-10-IAHU-0006,IHU-A-ICM,Institut de Neurosciences Translationnelles de Paris(2010)
European Project: 694665,H2020 ERC,ERC-2015-AdG,CoBCoM(2016)

Description

Effective representation of the four-dimensional diffusion MRI signal – varying over three-dimensional q-space and diffusion time τ – is a sought-after and still unsolved challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this qτ-space. Following recent terminology, we refer to our qτ-functional basis as " qτ-dMRI ". qτ-dMRI can be seen as a time-dependent realization of q-space imaging by Paul Callaghan and colleagues. We use GraphNet regularization – imposing both signal smoothness and sparsity – to drastically reduce the number of diffusion-weighted images (DWIs) that is needed to represent the dMRI signal in the qτ-space. As the main contribution, qτ-dMRI provides the framework to – without making biophysical assumptions – represent the qτ-space signal and estimate time-dependent q-space indices (qτ-indices), providing a new means for studying diffusion in nervous tissue. We validate our method on both in-silico generated data using Monte-Carlo simulations and an in-vivo test-retest study of two C57Bl6 wild-type mice, where we found good reproducibility of estimated qτ-index values and trends. In the hopes of opening up new τ-dependent venues of studying nervous tissues, qτ-dMRI is the first of its kind in being specifically designed to provide open interpretation of the qτ-diffusion signal.

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 29, 2023