Published July 8, 2009 | Version v1
Conference paper

Fitness landscapes and graphs: multimodularity, ruggedness and neutrality

Description

The performances of evolutionary algorithms (genetics algorithms, genetic programming, etc.) or local search algotihms (Simulated annealing, tabu search, etc.) depends on the properties of seach space structure. One concept to analyse the search space is the fitness landscapes in which the problem to optimize and the search algorithm are taken into account. The fitness landscape is a graph where the nodes are the potential solutions. The study of the fitness landscape consists in analysing this graph or a relevant partition of this graph according to the dynamic or search difficulty. This tutorial will give an overview, after an historical review of concept of fitness landscape, of the different ways to define fitness landscape in the field of evolutionary computation. Following, the two mains geometries (multimodal and neutral landscapes) corresponding to two different partitions of the graph, meets in optimization problems and the dynamics of metaheuristics on these will be given. The relationship between problems difficulty and fitness landscapes measures (autocorrelation, FDC, neutral degree, etc.) or the properties of the local optima networks, studied in recent work, will be deeply analysed. Finally, the tutorial will conclude with a brief survey of open questions and the recent researchs on fitness landscapes.

Abstract

International audience

Additional details

Created:
February 22, 2023
Modified:
November 29, 2023