Published December 2, 2023 | Version v1
Journal article

Operando analysis of a solid oxide fuel cell by environmental transmission electron microscopy

Others:
Photovoltaics-Laboratory (PV-Lab) ; Ecole Polytechnique Fédérale de Lausanne (EPFL)
Centre Suisse d'Electronique et de Microtechnique SA [Neuchatel] (CSEM) ; Centre Suisse d'Electronique et Microtechnique SA (CSEM)
Matériaux, ingénierie et science [Villeurbanne] (MATEIS) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
IRCELYON-Méthodologies En Microscopie Environnementale (MEME) ; Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Nanyang Technological University [Singapour] (NTU)
DENSsolutions
MajuLab ; National University of Singapore (NUS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
Q.J., M.B., M.D. and T.E. acknowledge funding from the French microscopy network METSA (www.metsa.fr) for access to the ETEM. The environmental transmission electron microscopy work was performed at the Consortium Lyon-St-Etienne de Microscopie (CLYM, www.clym.fr). M.B., T.E. and M.D. acknowledge funding from the INSTANT project of the France-Singapore MERLION program 2019-2020. M.D. acknowledges the Facilities for Analysis, Characterization, Testing and Simulations (FACTS) at the Nanyang Technological University for access to the FIB equipment, as well as financial support from the Nanyang Technological University start-up grant (Grant M4081924).

Description

Correlating the microstructure of an energy conversion device to its performance is often a complex exercise, notably in solid oxide fuel cell research. Solid oxide fuel cells combine multiple materials and interfaces that evolve in time due to high operating temperatures and reactive atmospheres. We demonstrate here that operando environmental transmission electron microscopy can identify structure-property links in such devices. By contacting a cathode-electrolyte-anode cell to a heating and biasing microelectromechanical system in a single-chamber configuration, a direct correlation is found between the environmental conditions (oxygen and hydrogen partial pressures, temperature), the cell open circuit voltage, and the microstructural evolution of the fuel cell, down to the atomic scale. The results shed important insights into the impact of the anode oxidation state and its morphology on the cell electrical properties.

Abstract

International audience

Additional details

Created:
January 13, 2025
Modified:
January 13, 2025