Published April 2012 | Version v1
Journal article

On Spanning Galaxies in Digraphs

Contributors

Others:

Description

In a directed graph, a star is an arborescence with at least one arc, in which the root dominates all the other vertices. A galaxy is a vertex-disjoint union of stars. In this paper, we consider the Spanning Galaxy problem of deciding whether a digraph D has a spanning galaxy or not. We show that although this problem is NP-complete (even when restricted to acyclic digraphs), it becomes polynomial-time solvable when restricted to strong digraphs. In fact, we prove that restricted to this class, the \pb\ is equivalent to the problem of deciding if a strong digraph has a strong digraph with an even number of vertices. We then show a polynomial-time algorithm to solve this problem. We also consider some parameterized version of the Spanning Galaxy problem. Finally, we improve some results concerning the notion of directed star arboricity of a digraph D, which is the minimum number of galaxies needed to cover all the arcs of D. We show in particular that dst(D)\leq \Delta(D)+1 for every digraph D and that dst(D)\leq\Delta(D) for every acyclic digraph D.

Abstract

International audience

Additional details

Identifiers

URL
https://hal.inria.fr/hal-00749191
URN
urn:oai:HAL:hal-00749191v1

Origin repository

Origin repository
UNICA