Published August 24, 2007 | Version v1
Conference paper

Ensemble spontaneous activity alterations detected by CISA approach

Others:
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Centre de recherche en neurobiologie - neurophysiologie de Marseille (CRN2M) ; Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)

Description

In this paper, we propose a method for detecting alterations in the Ensemble Spontaneous Activity (ESA), a random signal representing the composite spontaneous contribution of the auditory nerve recorded on the round window. The proposed method is based on shape analysis of the ESA amplitude histogram. For this task, we use a recent approach, the Corrected Integral Shape Averaging (CISA). Using this approach, a shape clustering algorithm is proposed to classify healthy and pathological ESA signals generated by a recent ESA model. This model allows a precise simulation of neural mechanisms occurring in the auditory nerve. The obtained results demonstrate that this shape analysis is very sensitive for detecting a small number of fibers with correlated firing, supposed to occur during a particular type of tinnitus. In comparison, the classical spectral index fails in this detection.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 28, 2023