Coherent Forward Scattering Peak and Multifractality
- Others:
- Laboratoire de Physique Théorique (LPT) ; Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- MajuLab (UMI 3654) ; National University of Singapore (NUS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Centre for Quantum Technologies [Singapore] (CQT) ; National University of Singapore (NUS)
- Institut de Physique de Nice (INPHYNI) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- National University of Singapore (NUS)
- Nanyang Technological University [Singapour]
- Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Description
It has recently been shown that interference effects in disordered systems give rise to two nontrivial structures: the coherent backscattering (CBS) peak, a well-known signature of interference effects in the presence of disorder, and the coherent forward scattering (CFS) peak, which emerges when Anderson localization sets in. We study here the CFS effect in the presence of quantum multifractality, a fundamental property of several systems, such as the Anderson model at the metal-insulator transition. We focus on Floquet systems, and find that the CFS peak shape and its peak height dynamics are generically controlled by the multifractal dimensions D1 and D2, and by the spectral form factor. We check our results using a one-dimensional Floquet system whose states have multifractal properties controlled by a single parameter. Our predictions are fully confirmed by numerical simulations and analytic perturbation expansions on this model. Our results, which we believe to be generic, provide an original and direct way to detect and characterize multifractality in experimental systems.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02991678
- URN
- urn:oai:HAL:hal-02991678v1
- Origin repository
- UNICA