Transport of flexible fibers in confined microchannels
- Others:
- Department of Mechanical and Aerospace Engineering [Princeton] (MAE) ; Princeton University
- Fluides, automatique, systèmes thermiques (FAST) ; Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH) ; Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
When transported in confined geometries rigid fibers show interesting transport dynamics induced by friction with the top and bottom walls. Fiber flexibility causes an additional coupling between fiber deformation and transport and is expected to lead to more complex dynamics. A first crucial step for their understanding is the characterization of the deformed fiber shape. Here we characterize this shape for a fiber transported in a confined plug flow perpendicular to the flow direction using a combination of microfluidic experiments and numerical simulations. In the experiments, size, initial orientation, and mechanical properties of the fibers are controlled using microfabrication techniques and in situ characterization methods. The numerical simulations use modified Brinkman equations as well as full three-dimensional simulations. We show that the bending of a perpendicular fiber results from the force distribution acting on the elongated object and is proportional to the elasto-viscous number, which compares viscous to elastic forces. We quantitatively characterize the influence of the confinement on the fiber deformation. The precise understanding of the deformation of a flexible fiber in a confined geometry can also be used in future to understand the deformation and transport of more complex deformable particles in confined flows, such as vesicles or red blood cells.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02167905
- URN
- urn:oai:HAL:hal-02167905v1
- Origin repository
- UNICA