Published 2017
| Version v1
Journal article
Applying clique-decomposition for computing Gromov hyperbolicity
Contributors
Others:
- Graphes, Algorithmes et Combinatoire (LRI) (GALaC - LRI) ; Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire de Mathématiques Informatique et Applications [UR1_1] (LAMIA) ; Université des Antilles (UA)
- ANR-13-BS02-0007,Stint,Structures Interdites(2013)
- ANR-11-LABX-0031,UCN@SOPHIA,Réseau orienté utilisateur(2011)
Description
Given a graph, its hyperbolicity is a measure of how close its distance distribution is to the one of a tree. This parameter has gained recent attention in the analysis of some graph algorithms and the classification of complex networks. We study on practical improvements for the computation of hyperbolicity in large graphs. Precisely, we investigate on relations between the hyperbolicity of a graph G and the hyperbolicity of its atoms, that are the subgraphs output by the clique-decomposition invented by Tarjan [51, 65]. We prove that the maximum hyperbolicity taken over the atoms is at most one unit off from the hyperbol-icity of G and the bound is sharp. We also give an algorithm to slightly modify the atoms, called the " substitution method " , which is at no extra cost than computing the clique-decomposition, and so that the maximum hyperbolicity taken over the resulting graphs is exactly the hyperbolicity of the input graph G. An experimental evaluation of our method for computing the hyperbolicity of a given graph from its atoms is provided for collaboration networks and biological networks. Finally, on a more theoretical side, we deduce from our results the first linear-time algorithm for computing the hyperbolicity of an outerplanar graph.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01540756
- URN
- urn:oai:HAL:hal-01540756v1
Origin repository
- Origin repository
- UNICA